УДК 617.7-07

Кувшинов Дмитрий Юрьевич

Доктор медицинских наук, доцент,

Заведующий кафедрой нормальной физиологии имени профессора Н.А. Барбараш,

Кемеровской государственный медицинский университет Минздрава России phisiolog@mail.ru

Иванов Вадим Иванович

Кандидат биологических наук, доцент,

Доцент кафедры нормальной физиологии имени профессора Н.А. Барбараш, Кемеровской государственный медицинский университет Минздрава России trampviy@yandex.ru

Голиков Максим Леонидович

Студент 3 курса лечебного факультета,

Кемеровской государственный медицинский университет Минздрава России maximmail2003@gmail.com

Вольф Владислав Витальевич

Студент 3 курса лечебного факультета,

Кемеровской государственный медицинский университет Минздрава России

Dmitry Yu. Kuvshinov

MD, PhD, Associate Professor,

Head of the Professor N.A. Barbarash Department of Normal Physiology, Kemerovo State Medical University of the Ministry of Health of Russia

phisiolog@mail.ru

Vadim I. Ivanov

PhD, Associate Professor

Associate Professor of the Professor N.A. Barbarash Department of Normal Physiology

Kemerovo State Medical University of the Ministry of Health of Russia trampviy@yandex.ru

Maxim L. Golikov

3rd year student of the Faculty of Medicine,

Kemerovo State Medical University of the Ministry of Health of Russia maximmail2003@gmail.com

Vladislav V. Volf

3rd year student of the Faculty of Medicine, vlad.volf.03@mail.ru

ВОЗМОЖНОСТИ АЙТРЕКИНГА ДЛЯ КОНТРОЛЯ ВИЗУАЛЬНОГО ОСМОТРА ПАЦИЕНТА СТУДЕНТАМИ-МЕДИКАМИ

POSSIBILITIES OF EYE TRACKING FOR CONTROL OF VISUAL EXAMINATION OF A PATIENT BY MEDICAL STUDENTS

Аннотация: В статье описывается исследование с использованием технологии айтрекинга (прибор Tobii Eye Tracker 5 с оригинальным программным обеспечением) по различным исследовательским сценариям. Выделены особенности окуломотрной реакции студентов-медиков при оценке различного визуального контента (фотографии больного человека, здорового трезвого человека и его же в состоянии алкогольного опьянения). Данный метод имеет перспективы использования в оценке последовательности осмотра пациента студентом-медиком и выявления клинически-значимых признаков и ошибок при их распознавании.

Ключевые слова: айтрекинг, движение глаз, тепловая карта, визуальный контент, физиология, студенты-медики, фокус внимания, осмотр пациента.

Resume: The article describes a study using eye tracking technology (Tobii Eye Tracker 5 device with original software) in various research scenarios. The features of the oculomotor reaction of medical students when assessing various visual content (photos of a sick person, a healthy sober person and him in a state of alcohol intoxication) are highlighted. This method has prospects for use in assessing the sequence of examination of a patient by a medical student and identifying clinically significant signs and errors in their recognition.

Keywords: eye-tracking, eye movement, heat map, visual content, physiology, medical students, focus of attention, patient examination.

Введение Айтрекинг или отслеживание движения глаз, является инновационной технологией, позволяющей получить данные о том, как пользователи взаимодействуют с различным визуальным контентом. Так, можно получить ценные данные о том, куда направлено внимание пользователя, сколько времени он фиксирует взгляд на определенных объектах. Айтрекинг дает возможность улучшить опыт взаимодействия с цифровыми устройствами [1]. Технологии айтрекинга применяются в маркетинге и рекламе, дизайне, образовании, психологии [2, 3, 4, 5]. Увеличивается количество исследований в физиологии и медицине. Например, установлены корреляции между движениями глаз и характером клинической оценки пациентов с болезнью Альцгеймера [6]. Пациенты с хроническим болевым синдромом чаще фиксируют взгляд на связанных с болью раздражителях по сравнению с нейтральными [7].

Цель исследования выявить и оценить возможности технологии айтрекинга для физиологических исследований, для оценки значимой для медицинского работника визуальной информации.

Материалы и методы исследования

При исследовании на базе кафедры нормальной физиологии имени профессора Н.А. Барбараш ФГБОУ ВО КемГМУ Минздрава России использован прибор Tobii Eye Tracker 5 с программным обеспечением собственной

разработки. Основными компонентами данного устройства являются комплект инфракрасных датчиков, инфракрасная камера, N-битный, m-ядерный микроконтроллер/процессор. При работе данного устройства инфракрасные диоды мерцают с частотой 90 Гц, с этой же частотой камера делает снимки, на которых определяется присутствие головы в кадре и открыты ли глаза испытуемого. Если условия выполнены, то запускаются алгоритмы поиска глаз на снимке, далее поиска зрачка и «блика», оценивается смещение зрачка относительно данного «блика».

Приложение регистрирует двумерные координаты x, y окуломоторных реакций, при этом фиксируется время взгляда на определенную точку, и на этой основе выстраиваются тепловые карты. Приложение позволяет сохранять данные в файле для последующих расчётов коэффициентов концентрации и скорости перемещения взгляда по изображениям, а также для визуализации траектории движения и построения тепловой карты.

Испытуемыми были 10 студентов-медиков 3 курса лечебного факультета КемГМУ (рис. 1), без заболеваний, подписавших добровольное информированное согласие.

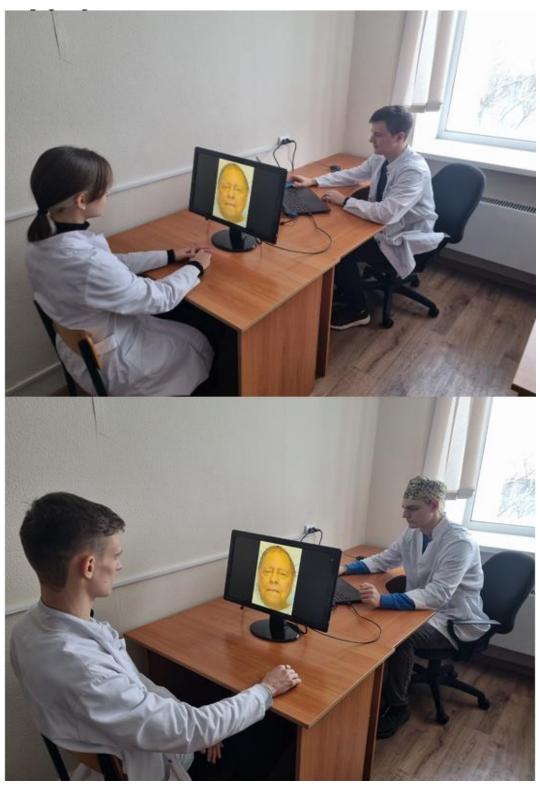


Рисунок 1. Процесс регистрации окуломоторной реакции с помощью Tobii Eye Tracker 5

Тестовый материал представлял собой фотоизображение больного человека, лица человека до и после приема алкоголя, взятых из банка фотоизображений, находящегося в свободном доступе. По результатам были построены усредненные тепловые карты.

Результаты и их обсуждение

На первом этапе респондентам была предложено рассматривать фотографию лица больной женщины в течение одной минуты, исследование проводилось в полной тишине, в лаборатории, кроме испытуемого и двух исследователей, не было других людей, запись данных была в утреннее время.

При завершении исследования заданы дополнительные вопросы: Как Вы считаете – этот человек здоров? Почему? Что привлекло Ваше внимание?

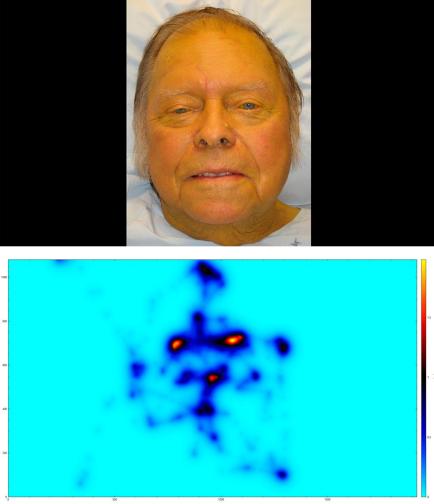


Рисунок 2. Фотоизображение больного человека, предъявляемое испытуемому, и тепловая карта, построенная в программной среде Tobii Eye Tracker 5.

При анализе тепловой карты (рис. 2) выявлено, что наибольшее внимание испытуемых акцентировано на глаза и нос, в меньшей степени — на участки кожи. Однако обращает на себя внимание фиксация взора в области шеи, где у пациентки прослеживается выраженная складка. Также испытуемые обращают внимание на область роста волос, граница ее у пациентки аномально высокая. Респонденты поясняют также, что цвет участков кожи является нетипичным и характерным для больного человека.

На втором этапе этим же испытуемым было предложено рассмотреть две фотографии — сначала с трезвым человеком, затем с ним же в состоянии опьянения. На выполнение данного исследования отводилась одна минута на каждую фотографию, исследование проводилось в полной тишине, в

лаборатории, кроме испытуемого и двух исследователей, не было других людей, запись данных была в утреннее время.

По завершении тестирования заданы дополнительные вопросы: Как Вы считаете – этот человек здоров? Почему? Что привлекло Ваше внимание? Что изменилось в человеке?

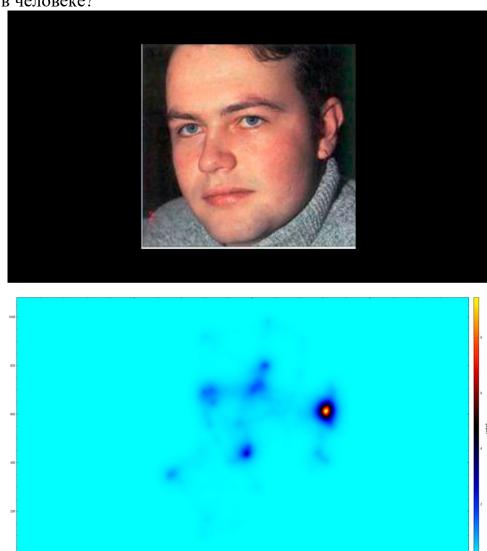


Рисунок 3. Фотоизображение лица трезвого человека, предъявляемое испытуемому, и тепловая карта, построенная в программной среде Tobii Eye Tracker 5.

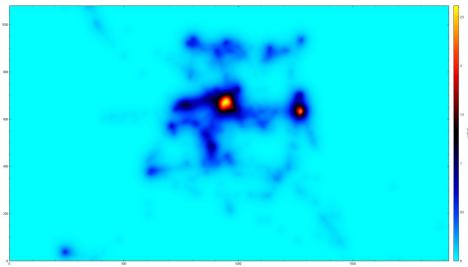


Рисунок 4. Фотоизображение лица человека в состоянии алкогольного опьянения, предъявляемое испытуемому, и тепловая карта, построенная в программной среде Tobii Eye Tracker 5.

При оценке первой фотографии (рис. 3) испытуемые обратили внимание на мочку уха человека. На ней заметно новообразование, привлекшее внимание, но в целом фотография человека оценивалась как изображение здорового и находящегося в ясном сознании человека. Во втором же случае (рис. 4) испытуемых в значительной степени фиксировали взгляд на глазах, а также покрасневшей коже. По-прежнему фиксация взгляда на тепловой карте определялась и в области мочки уха. Основываясь на вышеназванных признаках, респонденты оценили вторую фотографию как изображение человека в состоянии алкогольного опьянения.

Заключение

С помощью технологии айтрекинга можно определить движение глазных яблок при рассматривании визуального контента и установить «точки фиксации», что в свою очередь может быть использовано для определения оценки последовательности осмотра пациента и выявления — на какие

клинически значимые признаки обратил внимание студент-медик, а какие были им пропущены.

Литература

- 1. Stuart S, Hickey A, Vitorio R, Welman K, Foo S, Keen D, Godfrey A. Eyetracker algorithms to detect saccades during static and dynamic tasks: a structured review. Physiol Meas. 2019; 40(2): 02TR01. doi: 10.1088/1361-6579/ab02ab. Доступно по: https://iopscience.iop.org/article/10.1088/1361-6579/ab02ab Ссылка активна на 31.10.2023.
- 2. Лунева Е.А., Скобелкина Н.Г. Айтрекинг в системе современных технологий нейромаркетинга // Сибирский торгово-экономический журнал. 2016. №3 (24). Доступно по: https://cyberleninka.ru/article/n/aytreking-v-sisteme-sovremennyh-tehnologiy-neyromarketinga Ссылка активна на 31.10.2023.
- 3. Фазылзянова Г.И., Балалов В.В. Айтрекинг: когнитивные технологии в визуальной культуре // Вестник российских университетов. Математика. 2014. №2. Доступно по: https://cyberleninka.ru/article/n/aytreking-kognitivnye-tehnologii-v-vizualnoy-kulture Ссылка активна на 31.10.2023.
- 4. Абабкова М.Ю., Розова Н.К. К вопросу о месте технологии айтрекинга в российской высшей школе // Известия Волгоградского государственного педагогического университета. 2020. №3 (146). С.44-48. Доступно по: https://cyberleninka.ru/article/n/k-voprosu-o-meste-tehnologii-aytrekinga-v-rossiyskoy-vysshey-shkole Ссылка активна на 31.10.2023.
- 5. Чернявская В.С., Панченко Л.Л. Психодиагностические возможности айтрекинга и перспективы использования метода окулографии в обучении психологов // Азимут научных исследований: педагогика и психология. 2019. №2 (27). С. 400-402. Доступно по: https://cyberleninka.ru/article/n/psihodiagnosticheskie-vozmozhnosti-aytrekinga-i-perspektivy-ispolzovaniya-metoda-okulografii-v-obuchenii-psihologov Ссылка активна на 31.10.2023.
- 6. Pavisic IM, Firth NC, Parsons S, Rego DM, Shakespeare TJ, Yong KXX, Slattery CF, Paterson RW, Foulkes AJM, Macpherson K, Carton AM, Alexander DC, Shawe-Taylor J, Fox NC, Schott JM, Crutch SJ, Primativo S. Eyetracking Metrics in Young Onset Alzheimer's Disease: A Window into Cognitive Visual Functions. Front Neurol. 2017: 8: 377. eCollection 2017. doi: 10.3389/fneur.2017.00377. Доступно no: https://pubmed.ncbi.nlm.nih.gov/28824534/ Ссылка активна на 31.10.2023.
- 7. Chan FHF, Suen H, Jackson T, Vlaeyen JWS, Barry TJ. Pain-related attentional processes: A systematic review of eye-tracking research. Clin Psychol Rev. 2020: 80: 101884. doi: 10.1016/j.cpr.2020.101884. Доступно по: https://www.sciencedirect.com/science/article/abs/pii/S0272735820300726?via%3Dihub Ссылка активна на 31.10.2023.

References

1. Stuart S, Hickey A, Vitorio R, Welman K, Foo S, Keen D, Godfrey A. Eyetracker algorithms to detect saccades during static and dynamic tasks: a structured review. Physiol Meas. 2019; 40(2): 02TR01. doi: 10.1088/1361-6579/ab02ab.

- Available on: https://iopscience.iop.org/article/10.1088/1361-6579/ab02ab / Link active as of 10/31/2023.
- 2. Luneva E.A., Skobelkina N.G. Eye tracking in the system of modern neuromarketing technologies. Siberian Trade and Economic Journal. 2016; 3 (24). Available on: https://cyberleninka.ru/article/n/aytreking-v-sisteme-sovremennyhtehnologiy-neyromarketinga Link active as of 10/31/2023.
- 3. Fazylzyanova G.I., Balalov V.V. Eye tracking: cognitive technologies in visual culture // Bulletin of Russian Universities. Mathematics. 2014; 2. Available on: https://cyberleninka.ru/article/n/aytreking-kognitivnye-tehnologii-v-vizualnoy-kulture Link active as of 10/31/2023.
- 4. Ababkova M.Yu., Rozova N.K. On the question of the place of eye tracking technology in Russian higher education. News of the Volgograd State Pedagogical University. 2020; 3 (146): 44-48. Available on: https://cyberleninka.ru/article/n/k-voprosu-o-meste-tehnologii-aytrekinga-v-rossiyskoy-vysshey-shkole Link active as of 10/31/2023.
- 5. Chernyavskaya V.S., Panchenko L.L. Psychodiagnostic capabilities of eye tracking and prospects for using the oculography method in training psychologists // Azimuth of scientific research: pedagogy and psychology. 2019; 2 (27): 400-402. Available on: https://cyberleninka.ru/article/n/psihodiagnosticheskie-vozmozhnosti-aytrekinga-i-perspektivy-ispolzovaniya-metoda-okulografii-v-obuchenii-psihologov Link active as of 10/31/2023.
- 6. Pavisic IM, Firth NC, Parsons S, Rego DM, Shakespeare TJ, Yong KXX, Slattery CF, Paterson RW, Foulkes AJM, Macpherson K, Carton AM, Alexander DC, Shawe-Taylor J, Fox NC, Schott JM, Crutch SJ, Primativo S. Eyetracking Metrics in Young Onset Alzheimer's Disease: A Window into Cognitive Visual Functions. Front Neurol. 2017: 8: 377. eCollection 2017 doi: 10.3389/fneur.2017.00377. PMID: 28824534; PMCID: PMC5545969. Available on: https://pubmed.ncbi.nlm.nih.gov/28824534/ Link active as of 10/31/2023.
- 7. Chan FHF, Suen H, Jackson T, Vlaeyen JWS, Barry TJ. Pain-related attentional processes: A systematic review of eye-tracking research. Clin Psychol Rev. 2020: 80: 101884. doi: 10.1016/j.cpr.2020.101884. Available on: https://www.sciencedirect.com/science/article/abs/pii/S0272735820300726?via%3Di hub Link active as of 31.10.2023.